Künstliche Intelligenz Überblick
Aus FI-Wiki
Dieser Artikel gibt einen kompakten Überblick über Künstliche Intelligenz (KI), ihre Teilbereiche, Einsatzmöglichkeiten, wirtschaftliche Aspekte sowie rechtliche und ethische Rahmenbedingungen (EU-Fokus).
KI vs. ML vs. DL – Unterschiede
- Künstliche Intelligenz (KI) ist der Oberbegriff für Systeme, die menschliche Fähigkeiten wie Problemlösen, Planen, Sprache oder Wahrnehmung nachbilden. Dazu zählen sowohl regelbasierte als auch datengetriebene Verfahren.
- Maschinelles Lernen (ML) ist ein Teilbereich der KI. Modelle lernen Muster aus Daten, anstatt explizit programmiert zu werden (z. B. Entscheidungsbäume, SVM, Gradient Boosting).
- Deep Learning (DL) ist ein Teilbereich des ML. Es nutzt tiefe künstliche neuronale Netze und wird vor allem bei Bild-, Sprach- und Textverarbeitung eingesetzt. DL benötigt meist sehr große Datenmengen und hohe Rechenleistung und ist oft weniger gut erklärbar.
Kurzvergleich
| Kriterium | KI (gesamt) | ML | DL |
|---|---|---|---|
| Ansatz | Regeln und Lernen | Lernen aus Daten | Tiefe neuronale Netze |
| Datenbedarf | variabel | mittel–hoch | sehr hoch |
| Erklärbarkeit | hoch–mittel | mittel | eher gering |
| Typische Aufgaben | Planung, Suche, Expertensysteme | Prognosen, Klassifikation | Bild-, Sprach-, Texterkennung, GenAI |
Einsatzmöglichkeiten
- Office & Wissensarbeit: Textentwürfe, Übersetzungen, Recherche, Meeting-Notizen, Code-Assistenz
- Kundenservice & Vertrieb: Chatbots, Antwortvorschläge, Lead-Scoring, Personalisierung
- Industrie / IoT: Predictive Maintenance, visuelle Qualitätsprüfung, Supply-Chain-Optimierung
- Finanzen: Betrugserkennung, Kredit-Scoring (unter strengen Compliance-Vorgaben)
- Gesundheit: Bilddiagnostik-Support, Triage-Tools (als Assistenzsysteme)
- Bildung: Adaptive Lernpfade, automatisiertes Feedback, Lern-Analytics
- Öffentlicher Sektor: Dokumentenklassifikation, Entscheidungsunterstützung, Verkehrs- und Energieoptimierung
Wirtschaftliche Betrachtung
- Chancen: Studien schätzen für generative KI ein jährliches Potenzial von mehreren Billionen US-Dollar über viele Anwendungsfelder hinweg.
- Kosten:
- Daten (Beschaffung, Aufbereitung, Labeling)
- Technik (Modelle, GPU, Speicher, APIs)
- Betrieb (MLOps, Monitoring)
- Compliance & Security (DSGVO, EU-AI-Act)
- Personal & Change-Management (Schulungen)
- ROI-Hebel: Automatisierung, Qualitätssteigerung, Fehlerreduktion, bessere Entscheidungen, neue Produkte.
- Arbeitsmarkt: Produktivitätsgewinne sind wahrscheinlich, erfordern aber Weiterbildung und Anpassung von Kompetenzen.
Vorteile und Nachteile
Vorteile
- Skalierbare Automatisierung repetitiver Aufgaben
- Schnellere, datenbasierte Entscheidungen
- Personalisierung in Echtzeit
- Entlastung von Routinetätigkeiten
Nachteile und Risiken
- Bias & Fairness: Verzerrte Trainingsdaten können diskriminierende Ergebnisse erzeugen
- Erklärbarkeit: Black-Box-Modelle erschweren Nachvollziehbarkeit
- Sicherheit & Robustheit: Halluzinationen, Prompt- und Datenangriffe
- Betriebsrisiken: Modell-Drift, Compliance- und IP-Risiken
- Abhängigkeiten: Vendor-Lock-in, hohe Rechen- und Energiekosten
Rechtliche und ethische Aspekte (EU-Fokus)
EU-KI-Gesetz (EU AI Act)
Das EU-KI-Gesetz ordnet KI-Systeme in Risikoklassen ein:
- Verbotene Systeme (inakzeptables Risiko):
- Social Scoring,
- biometrische Echtzeit-Fernidentifizierung im öffentlichen Raum,
- manipulative Beeinflussung.
- Hochrisiko-Systeme (streng reguliert):
- Bewerbermanagement,
- Kredit-Scoring,
- Gesichtserkennung,
- kritische Infrastrukturen...
- Pflichten: Risikomanagement, Dokumentation, Transparenz, menschliche Aufsicht, Monitoring.
- Geringes Risiko (Transparenzpflichten):
- Chatbots,
- Emotionserkennung,
- generative Bild- und Videosysteme.
- Minimales Risiko:
- Spamfilter,
- Predictive Maintenance,
- Videospiel-KI.
Datenschutz (DSGVO)
- Zweckbindung, Datenminimierung, Transparenz und Sicherheit
- Artikel 22: Einschränkungen bei rein automatisierten Entscheidungen mit erheblicher Wirkung
- Datenschutz-Folgenabschätzung (DPIA) bei hohem Risiko
Ethik und gute Praxis
- Fairness und Nichtdiskriminierung
- Transparenz und Erklärbarkeit
- Sicherheit und Robustheit
- Menschliche Aufsicht (Human-in-the-Loop)
- Protokollierung und Monitoring
- Kennzeichnung von KI-generierten Inhalten (z. B. Deepfakes)
Kurzmerksatz
KI bietet große Chancen für Effizienz und Innovation, erfordert jedoch verantwortungsvollen Einsatz, klare Regeln und menschliche Kontrolle.
